Coronary Artery Disease in Women: A 2013 Update

Kavita Sharma*, Martha Gulati*.

Columbus, OH, USA

SUMMARY

Coronary artery disease (CAD) is a leading cause of death of women and men worldwide. CAD’s impact on women traditionally has been underappreciated due to higher rates at younger ages in men. Microvascular coronary disease disproportionately affects women. Women have unique risk factors for CAD, including those related to pregnancy and autoimmune disease. Trial data indicate that CAD should be managed differently in women. In this review, we will examine risk assessment for CAD in women, CAD’s impact on women, as well as CAD’s female-specific presentation and management strategies.

For far too long, many believed that coronary artery disease (CAD) was primarily a “man’s disease.” With increased awareness of the fact that the leading cause of death in women is CAD, this notion is slowly eroding [1]. CAD is a common cause of death or disability in men and women, but CAD manifests differently in women. Furthermore, as women are being increasingly included in CAD trials, management strategies specific to women are emerging [2–6]. In this review, we summarize the current state of knowledge about women and CAD. We will review the impact of CAD on women, risk assessment, unique sex-specific CAD characteristics, and management strategies specific to women in 2013.

PREVALENCE OF CAD IN WOMEN

CAD is the leading cause of death for both men and women in the United States [7]. More women than men die of CAD [7]. More women have died from CAD than of cancer (including breast cancer), chronic lower respiratory disease, Alzheimer disease, and accidents combined [7]. From 1998 to 2008, the rate of death attributable to CAD declined 30.6%, but the rates are increasing in young women (<55 years) [7–8]. CAD mortality is higher in women than in men [7]. Of particular concern is the rise in obese American individuals, with its subsequent impact on diabetes and future development of CAD. The prevalence of obesity is similar in men and women, at 34% of the American population, according to NHANES (National Health and Nutrition Examination Survey) 2007 to 2008 [9]. However, the impact of obesity on the development of CAD appears to be greater in women than in men. Among individuals in the Framingham Heart Study, obesity increased the relative risk of CAD by 64% in women, as opposed to 46% in men [10].

The average age at first myocardial infarction (MI) is 64.5 years for men and 70.3 years for women [7]. The incidence of CAD in women lags behind men by 10 years and by 20 years for more serious clinical events such as MI and sudden death [11]. The consequences of CAD are worse in women than in men. Among individuals with premature MI (under age 50), women experience a 2-fold higher mortality rate after acute MI compared to men [12]. Among older individuals (over the age of 65), women are more likely to die within the first year after MI [7]. In individuals 45 to 64 years of age, women are more likely than men to have heart failure within 5 years of MI [7]. Women have higher rates of angina than do men [7,13]. A female excess of anginal prevalence was demonstrated in a meta-analysis of data from 31 widely varied countries, including non-English speaking countries [13]. The pooled sex ratio of angina prevalence was 1.20 (95% confidence interval: 1.14 to 1.28, p < 0.0001) and was true of premenopausal and post-menopausal women [13].

The burden of CAD is high among women. However, it appears that the pathophysiology of CAD varies between women and men. On cardiovascular computed tomography, women have been shown to have smaller coronary artery diameters than men do [14]. Women are less likely than men are to have obstructive CAD at the time of coronary angiography [15,16]. Despite the lack of obstructive CAD visualized on cardiac catheterization at the time of acute coronary syndrome (ACS), the prognosis of these women is not benign. Over one-half of symptomatic women without obstructive CAD continue to have signs and symptoms of ischemia and to undergo repeat hospitalization and coronary angiography [17,18].

Recently, disorders of the coronary microvasculature and endothelial dysfunction have been implicated in the occurrence of nonobstructive CAD in women. Han et al. [19] studied men and women with early CAD and found that men have higher degrees of atheroma and epicardial endothelial dysfunction, whereas women have more disease of the microvasculature. Retinal artery narrowing has been shown to be a marker for microvascular disease, and in the ARIC (Atherosclerosis Risk in Communities Study) population, a decrease in retinal artery narrowing assessed on retinal photographs corresponded to an increase in CAD incidence in women. This relationship was not seen in men, supporting a more prominent role of microvascular disease in CAD pathophysiology in women as opposed to men [20]. In addition, autopsy data has shown that women have...
RISK ASSESSMENT IN WOMEN

There are multiple ways to assess an asymptomatic woman’s risk. The 2010 American College of Cardiology/American Heart Association Guideline for Assessment of Cardiovascular Risk in Asymptomatic Adults recommends obtaining a Framingham-like (global) risk score that incorporates multiple traditional cardiovascular risk factors for all asymptomatic adults without a history of CAD as a class 1 indication [26].

The “Effectiveness-Based Guidelines for the Prevention of Coronary Artery Disease in Women—2011 Update” recommends risk-stratifying women based on their risk scores into 3 categories: 1) high risk; 2) at risk; and 3) optimal risk [27]. High-risk individuals include all women with known CAD, peripheral arterial disease, symptomatic carotid artery disease, abdominal aortic aneurysm, end-stage or chronic kidney disease, or who have a 10-year predicted CAD risk ≥10%. At-risk status is defined as having 1 or more of the following risk factors: cigarette smoking, systolic blood pressure ≥120 mm Hg, diastolic blood pressure ≥80 mm Hg, or treated hypertension; total cholesterol >200 mg/dl, high-density lipoprotein cholesterol <50, or treated dyslipidemia; obesity (particularly central adiposity); poor diet; physical inactivity; family history of premature CAD occurring in first-degree relatives in men <55 years of age or in women <65 years of age; metabolic syndrome; evidence of advanced subclinical atherosclerosis (e.g., coronary calcification, carotid plaque, or thickened intima-media thickness); poor exercise capacity on treadmill test and/or abnormal heart rate recovery after stopping exercise; systemic autoimmune collagen-vascular disease (e.g., lupus or rheumatoid arthritis); or history of pre-eclampsia, gestational diabetes, or pregnancy-induced hypertension. Optimal risk is defined as having all of the following factors: total cholesterol <200 mg/dl (untreated); blood pressure <120/ <80 mm Hg (untreated); fasting blood glucose <100 mg/ dl (untreated); body mass index <25 kg/m²; abstinence from smoking and a healthy (DASH [Dietary Approaches to Stop Hypertension]-like) diet (Table 1) [27].

Traditional risk factors such as age, family history of CAD, hypertension, diabetes, dyslipidemia, smoking, and physical inactivity are important predictors of risk in women. In contrast to the linear increase in CAD in men as they age, there is a more exponential increase in CAD in women after the age of 60 [28]. The NCEP ATP III (National Cholesterol Education Panel Adult Treatment Panel III) considers the age of 55 years or above to be a risk factor for women, compared with 45 years for men. Irrespective of this, there is higher mortality among younger women, as opposed to men, with acute MI [12]. Premature CAD in a first-degree female relative is a relatively more potent risk factor than is premature CAD in male relatives [29]. Hypertension is more prevalent in women, particularly older women [30]. Women with hypertension have a higher risk of developing congestive heart failure than men do [31]. The presence of diabetes is a relatively greater risk factor for CAD in women versus men, increasing a woman’s risk of CAD by 3- to 7-fold, with only a 2- to 3-fold increase in diabetic men [32]. Furthermore, women with diabetes have a greater than 3-fold increase in CAD risk than nondiabetic women do [32]. After the fifth decade of life, women have higher cholesterol levels than men do [33]. Elevated triglycerides have been shown to be of greater risk to women than to men [34–36]. Lack of physical fitness is a predictor of mortality. In the St. James Women Take Heart Project, asymptomatic women who were unable to achieve 5 metabolic equivalents (MET) on a Bruce protocol have a 3-fold increased risk of death compared with women who achieved >8 MET, even after controlling for traditional risk factors [37]. Focus on risk factors is important in the prevention of CAD in women, just as it is in men. When women with 2 or more risk factors were compared to women with no risk factors, those without risk factors had a substantially lower lifetime risk of CAD (8.2% vs. 50.2%) [38].

Addressing those risk factors that are unique to women is also important. Though it is unclear if high-sensitivity C-reactive protein (hsCRP) is an independent risk factor for CAD, it may improve risk detection in women [39–41]. HsCRP may add prognostic information in women with metabolic syndrome. In I study [42] of apparently healthy women, those women with the metabolic syndrome and a baseline hsCRP >3.0 mg/l had almost twice the risk of future cardiovascular events than did those with metabolic syndrome and a hsCRP <3.0 mg/l. The Reynolds risk score, a risk assessment tool, incorporates hsCRP and has been shown to improve risk prediction in women [43].

Calcium scoring has been shown to improve risk prediction in women. In MESA (Multi-Ethnic Study of Atherosclerosis), 3,601 women were studied, and 90% were classified as low risk. Prevalence of any coronary calcium was associated with a 6-fold increased risk of CAD, adjusted for age, ethnicity, body mass index, low-density lipoprotein, high blood pressure, smoking, estrogen, and statin therapy. A calcium score of ≥300 was associated with an 8.6%
The absolute risk of CAD. The presence of coronary calcium therefore redefined a group of women improperly labeled as low risk by Framingham criteria [44].

Autoimmune diseases are more prevalent in women and have been implicated in higher CAD risk. Rheumatoid arthritis and systemic lupus erythematosus (SLE) have been associated with a significantly increased relative risk for CAD [43]. Women in the Framingham Offspring Study ages 34 to 44 years with SLE were 50% more likely to have an acute MI than were women of the same age without SLE [46]. This increased CAD burden in women with SLE has been demonstrated in other studies, including 1 study of women with SLE who underwent single-photon emission computed tomography (SPECT), and the presence of myocardial perfusion defects was independently associated with an increased risk of CAD, beyond the Framingham risk score alone [47]. In a longitudinal study of patients with lupus, serial carotid ultrasound demonstrated that 28% had progressive atherosclerosis over a 34-month follow-up period, averaging approximately a 10% progression per year [48].

Unique to women are the hormonal changes that occur over their lifetimes and ultimately affect CAD risk. Dysfunction in ovulation has been associated with increased CAD risk. A meta-analysis found that women with polycystic ovarian syndrome have an increased prevalence of impaired glucose tolerance, metabolic syndrome, and diabetes when compared with women without polycystic ovarian syndrome [49]. Functional hypothalamic amenorrhea, a cause of ovarian dysfunction, has been shown to be associated with premature coronary atherosclerosis [50]. Early age at menarche (<12 years) is also associated with increased risk of CAD events, CAD mortality, and overall mortality in women, and the association appeared to be only partly mediated by increased adiposity [51].

Women with a history of pre-eclampsia have double the risk of subsequent ischemic heart disease, stroke, and venous

<table>
<thead>
<tr>
<th>TABLE 1. Classification of CAD risk in women</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Status</td>
</tr>
</tbody>
</table>
| High risk (≥1 high-risk state) | • Clinically manifest CHD
• Clinically manifest cerebrovascular disease
• Clinically manifest peripheral arterial disease
• Abdominal aortic aneurysm
• End-stage or chronic kidney disease
• Diabetes mellitus
• 10-year predicted CAD risk >10% |
| At risk (>1 factor) | • Cigarette smoking
• SBP >120 mm Hg, DBP >80 mm Hg, or treated hypertension
• Total cholesterol >200 mg/dl, HDL-C <50 mg/dl, or treated for dyslipidemia
• Obesity, particularly central adiposity
• Poor diet
• Physical inactivity
• Family history of premature CAD occurring in first-degree relatives in men <55 years of age or in women <65 years of age
• Metabolic syndrome
• Evidence of advanced subclinical atherosclerosis (e.g., coronary calcification, carotid plaque, or thickened IMT)
• Poor exercise capacity on treadmill test and/or abnormal heart rate recovery after stopping exercise
• Systemic autoimmune collagen-vascular disease (e.g., lupus or rheumatoid arthritis)
• History of pre-eclampsia, gestational diabetes, or pregnancy-induced hypertension |
| Ideal coronary artery health (all of these) | • Total cholesterol <200 mg/dl (untreated)
• BP <120/<80 mm Hg (untreated)
• Fasting blood glucose <100 mg/dl (untreated)
• Body mass index <25 kg/m²
• Abstinence from smoking
• Healthy (DASH-like) diet |

CAD, coronary artery disease; CHD, coronary heart disease; DASH, Dietary Approaches to Stop Hypertension; DBP, diastolic blood pressure; HDL-C, high-density lipoprotein cholesterol; IMT, intima-media thickness; SBP, systolic blood pressure. Adapted, with permission, from Mosca et al. [27].
thromboembolic events over the 5 to 10 years following the pregnancy [52]. Gestational diabetes increases the risk for future diabetes [53], thereby increasing the risk for future CAD. Accordingly, a history of pre-eclampsia or gestational diabetes categorizes a woman as “at risk” for CAD, based on the 2011 “Effectiveness-Based Guidelines for Prevention of CAD in Women” [27]. Another risk factor to consider in women is the effect of breast cancer therapy on future CAD risk. As was recently reported, although advances in breast cancer therapies are improving survival in early breast cancer, the gains are being attenuated by increasing CAD risk [54]. Whether the increased CAD risk is due to the breast cancer therapies or to the disease itself (which is associated with some of the same risk factors for CAD) remains unknown.

DIAGNOSIS OF MYOCARDIAL ISCHEMIA IN WOMEN

An exercise stress test is used commonly in the evaluation of suspected CAD. In women, ST-segment depression noted on exercise stress testing is felt to be less accurate than it is in men; in women, the sensitivity and specificity of ST-segment depression is lower than in men [55]. The negative predictive value is high in both men and women, however [56]. A negative exercise stress test, therefore, can effectively rule out the diagnosis of CAD in women. The Duke treadmill score, which incorporates exercise time, ST-segment deviation, and an anginal score, is particularly useful in women and performs better in women than in men for predicting significant CAD [57]. Exercise is a powerful predictor of CAD. Importantly, a nomogram has been established defining age-predicted exercise capacity in women (Fig. 1) [58]. As mentioned earlier, women who are unable to reach 5 METs or perform <85% of age-predicted fitness level on an exercise stress test have a higher risk of MI and all-cause mortality [37,58].

Stress echocardiography has similar high levels of sensitivity and specificity in women and men [59,60]. Its lack of radiation is particularly attractive in younger women. Myocardial perfusion imaging using SPECT has been well studied in women. The incorporation of technetium-99 sestamibi radiotracer and the use of gating technology have improved the sensitivity and specificity of SPECT imaging in women to nearly 90% (Table 2) [61–78]. SPECT stress imaging effectively risk-stratifies women [79–81]. In women with a normal myocardial perfusion study using SPECT imaging, the annual CAD death rate is very low (0.6%/year), in contrast to a much higher event rate (3%/year) in those with abnormal myocardial perfusion [81].

There is increasing interest in the use of stress cardiac magnetic resonance (CMR) imaging in the assessment of women. A recent study of predominantly female patients with chest pain and nonobstructive CAD who underwent adenosine CMR found that subendocardial ischemia was frequently present when compared with images of control subjects [82]. In women with ACS and normal coronary arteries who underwent CMR, abnormalities on late gadolinium enhancement consistent with ischemia were frequently noted [83]. In a small substudy from the WISE cohort, women with nonobstructive CAD with an abnormal stress-induced CMR had an increase in adverse cardiovascular events [84]. CMR and its applications to women and CAD are only beginning to be explored; much remains to be learned about CMR’s prognostic implications.

MANAGEMENT OF OBSTRUCTIVE CAD IN WOMEN

Why is mortality due to ACS higher in women than in men [7]? Trials and registry studies suggest women with ACS are treated less aggressively than men are. In the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients Suppress Adverse Outcomes With Early Implementation of the American College of Cardiology/American Heart Association Guidelines) initiative [85], women were less likely to receive heparin and glycoprotein (GP) IIb/IIIa inhibitors and less likely to undergo cardiac catheterization and revascularization than men were. Women with ACS have also been shown to be less likely to receive early aspirin, beta-blockers, reperfusion, and timely reperfusion [86].

Strategies for ACS may have different efficacy in women than in men. A meta-analysis of randomized controlled trials of ACS showed that an invasive strategy was more beneficial in women with positive biomarkers in contrast to women with negative biomarkers; such a difference was not seen in men [2]. After percutaneous coronary intervention, women have been shown to have a higher mortality in ST-segment elevation and non–ST-segment elevation MI [87].

![FIGURE 1. Nomogram to calculate percent of predicted exercise capacity for age for men and women. Constructing a line from the patient’s achieved metabolic equivalents (METs) in an exercise stress test and age will intersect with the patient’s percentage of predicted exercise capacity for age, based on sex. Established using the following regression lines based on age and sex: Men: Predicted METs = 14.7 − (0.11 × age); Women: Predicted METs = 14.7 − (0.13 × age). Adapted, with permission, from Gulati et al. [58].](image-url)
Furthermore, in ACS patients, women without raised biomarkers did not benefit from GP IIb/IIIa inhibitors, unlike men; when women had raised biomarkers, they did receive a risk reduction with GP IIb/IIIa inhibitors [3]. Women were found in 1 trial [88] to experience higher rates of bleeding with percutaneous intervention, however, this has been shown to be largely attributable to body size and renal function.

Several recent trials have specifically examined drug-eluting stent placement in men and women and, overall, have found similar outcomes after stent placement [89,90]. Among patients undergoing coronary artery bypass grafting (CABG), however, female sex is an independent risk factor for morbidity and mortality. Women have a higher risk of morbidity and mortality and they experience less relief from angina than do men after CABG, despite comprising less than 30% of the CABG population [4,5]. Interestingly, this sex discrepancy appears to be reduced when an off-pump CABG is performed [91].

MANAGEMENT OF NONOBSTRUCTIVE CORONARY DISEASE IN WOMEN

Among women with symptoms of myocardial ischemia who have been demonstrated to have angiographically nonobstructive CAD, the prognosis was initially felt to be benign [92,93]. However, more recent data have shown that the prognosis is not benign and the risk of cardiovascular events is higher than it is for asymptomatic women [18,94]. Patients with unstable angina and no critical coronary obstruction still had a 2% risk of death and MI at 30 days after MI [95]. Among women with persistent chest pain but no obstructive CAD at cardiac catheterization for suspected ACS, cardiovascular outcomes were worse in those with continued chest pain [17]. Symptomatic women in the WISE study with nonobstructive CAD (lesions 1% to 49%) had a CAD event rate of 16% versus only 7.9% in women with no CAD and only 2.4% in asymptomatic age- and race-matched control subjects [94].

The focus of treatment of nonobstructive CAD has been on symptom improvement or vascular function response. Statins and angiotensin-converting enzyme inhibitors have been shown to improve endothelial function and symptoms [96–99]. Statins have been demonstrated to improve microcirculation [100]. Chest pain syndromes have been effectively treated with beta-blockers [101]. Imipramine has been shown to improve symptoms in women with chest pain and nonobstructive CAD, possibly related to a visceral analgesic effect [102]. L-arginine has been shown to improve endothelial function and symptoms in patients with nonobstructive CAD [103], although concerns about its safety have arisen [104]. The effects of ranolazine are promising. A recent pilot study demonstrated that women with angina, myocardial ischemia, and no obstructive CAD had an improvement in angina with ranolazine [6]. Randomized control data on women with chest pain and nonobstructive CAD are currently lacking; further research in this area is needed.

THE UNDERTREATMENT OF CAD IN WOMEN

Awareness of the tremendous effect CAD has on women is slowly increasing. In 1997, only 30% of American women surveyed were aware that the leading cause of death in women is CAD, this increased to 54% in 2009 [1]. In a survey performed in 2004, fewer than 1 in 5 physicians recognized that more women than men die each year from CAD [105]. Unfortunately, women are less likely to receive preventive recommendations, such as lipid-lowering therapy, aspirin, and lifestyle advice, than are similarly scoring Framingham-risk men [105,106]. Hypertensive women are less likely to have their blood pressure at goal [107]. Women are less likely to be treated to reach goal for low-density lipoprotein cholesterol [108]. Female diabetics, the group at highest risk for CAD, have the greatest sex disparity in achieving low-density lipoprotein cholesterol targets [109]. Cardiac rehabilitation after MI is underused, particularly in women, as demonstrated in numerous national studies [110–113]. Women are 55% less likely to participate in cardiac rehabilitation than men are [110].

CONCLUSIONS

Women are affected by CAD in large numbers and to a large degree. CAD is the leading cause of mortality in women. The manifestation of CAD has unique characteristics in women. Increasing data demonstrate that some treatment strategies have sex-specific effectiveness. Further research regarding the pathophysiology of CAD in women, diagnosis, and
treatment strategies specific to women is required. CAD is not a "man's only" disease, and we eagerly await future studies that examine its unique presence in women.

REFERENCES

