

Managing, Pooling and Evaluating Large Datasets

WHF ELF

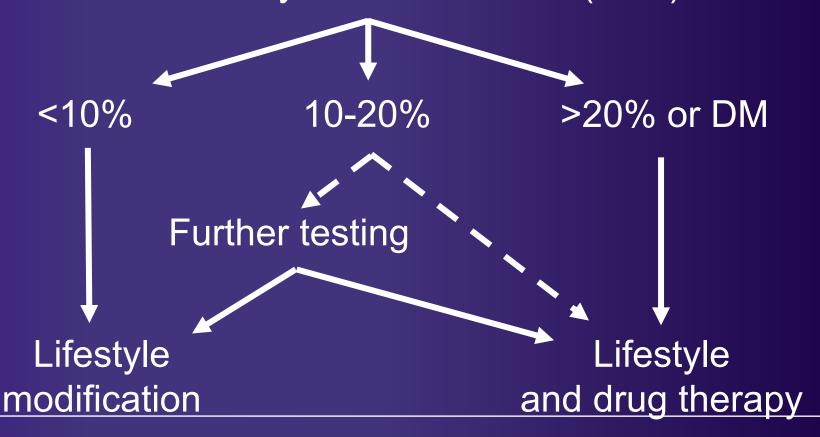
Donald M. Lloyd-Jones, MD ScM Senior Associate Dean Chair and Professor of Preventive Medicine Northwestern Feinberg School of Medicine

Greetings from Chicago!

Disclosures

No relevant RWI

Funding from NHLBI, NCATS, NIH

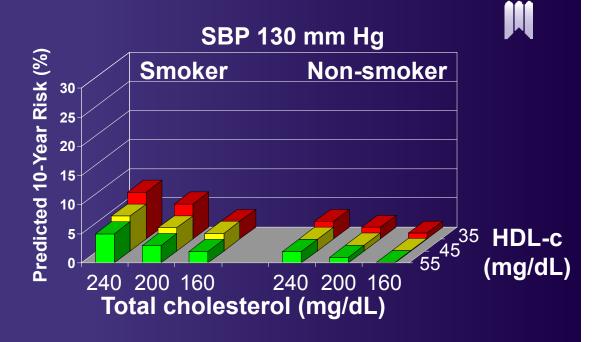


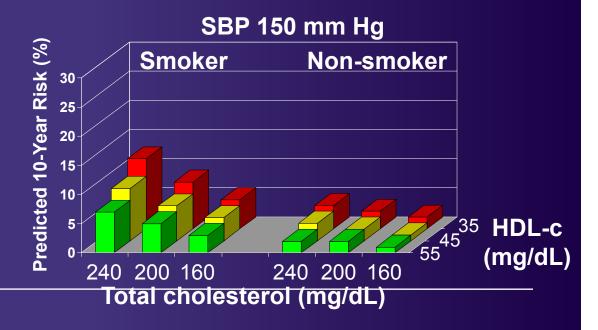
Outline

- Discovering lifetime risks for CVD (and other NCDs/chronic diseases of aging)
 - Power, pitfalls, promise of 10-year risk assessment
 - Lifetime Risk Pooling Project
 - Design
 - Analysis
 - Results

Current Paradigm for Risk Estimation and Market Treatment: ATP-III

"Intensity of prevention efforts should match the absolute risk of the patient" Estimate 10-year absolute risk (FRS)




Rationale: Lifetime Risk Estimation

- Reliance <u>solely</u> on estimates of <u>short-term</u> absolute risk to <u>communicate risk</u> and <u>make</u> <u>treatment decisions</u> is problematic
 - Atherosclerosis is a lifecourse disease
 - Any single risk factor can produce cumulative damage and high risk if left untreated for years
 - Almost all men <50 and women <70 are considered to be at "low" short-term risk regardless of risk factor burden

10-Year
Predicted
Risks in
ATP Risk
Assessment
Tool:
Woman, Age 55

Cavanaugh-Hussey, Berry, Lloyd-Jones, Prev Med 2008.

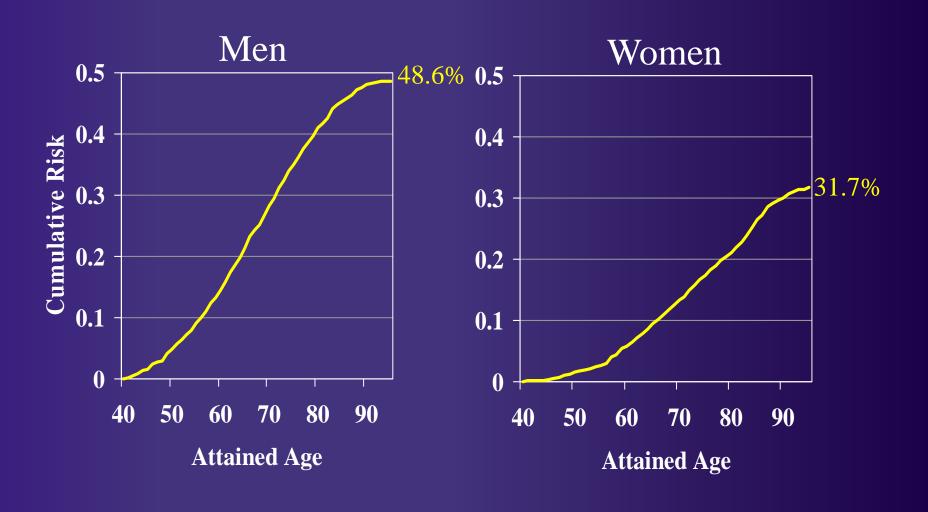
Rationale: Lifetime Risk Estimation

Lifetime risk

- The absolute cumulative risk of an individual developing a given disease before death
- Accounts for risk of disease of interest, remaining life expectancy, and competing causes of death
- Reflects real-life risks and population burden of disease better than Kaplan-Meier cumulative incidence
- Allows for comparison of disease burden now and in future
- May provide adjunctive information for individual risk assessment

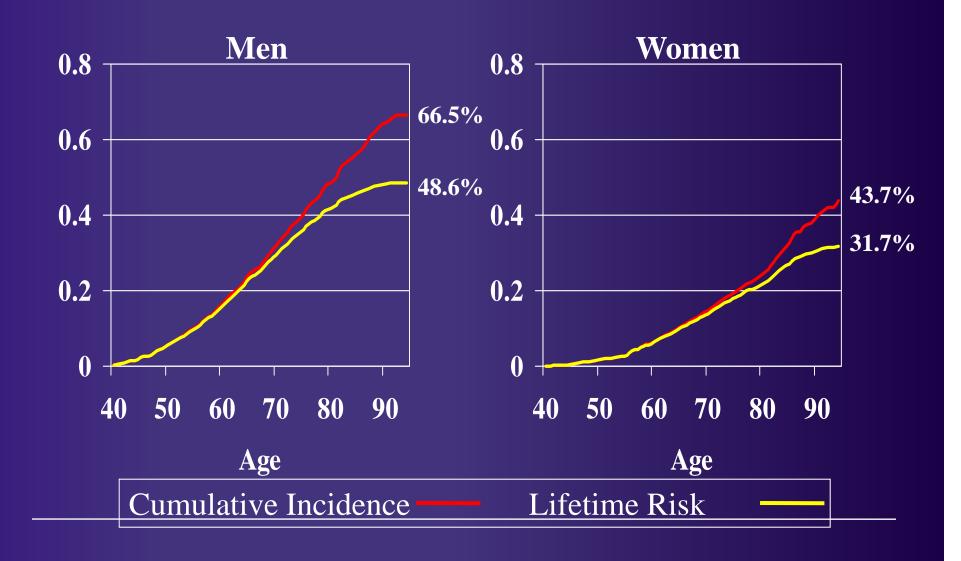
Methods

- Calculation of lifetime risk
 - Need to account for competing risk of death
 - Standard epidemiologic methods do not, yielding over-estimates of risk
 - Multiple-decrement life-table analysis
 - Accounts for risk of disease and competing risk of death

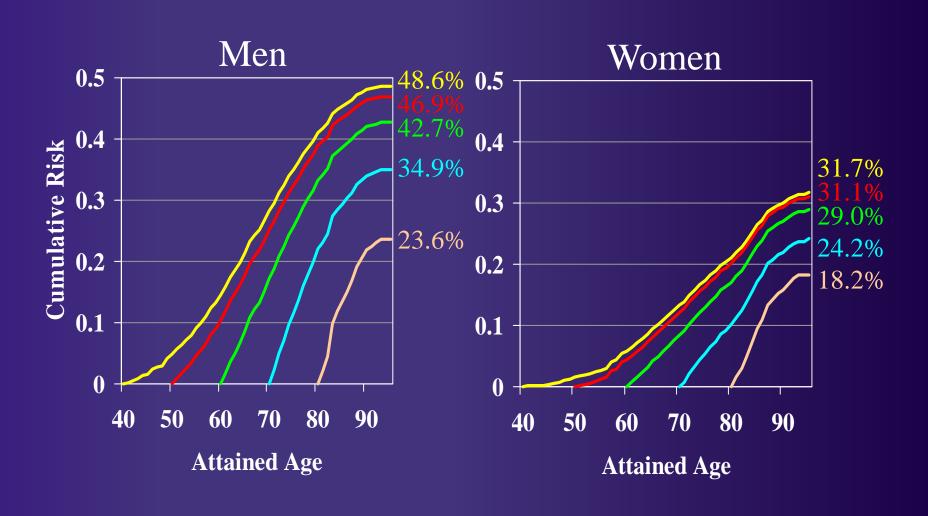


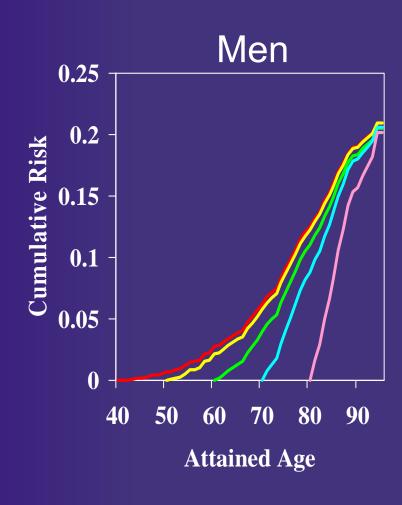
Study Sample

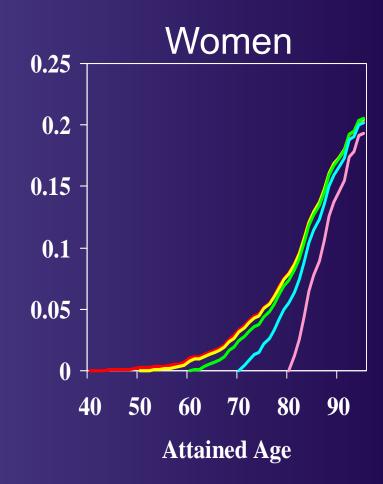
- Population needed for stable estimates
 - Huge cohort with wide age range and moderate follow up
 - At least moderate size cohort with longer term follow up
 - Especially if stratifying by RF levels
 - Mutable vs immutable factors

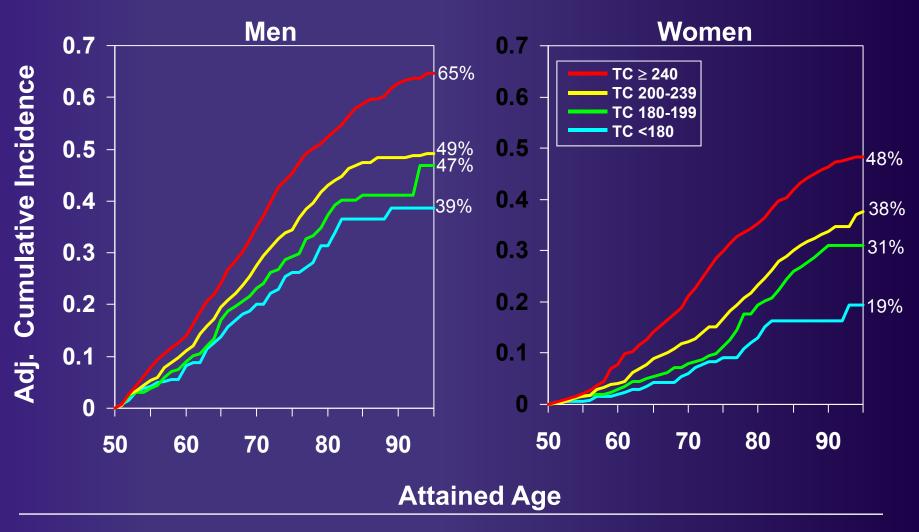


Lifetime Risk for CHD by Age and Sex

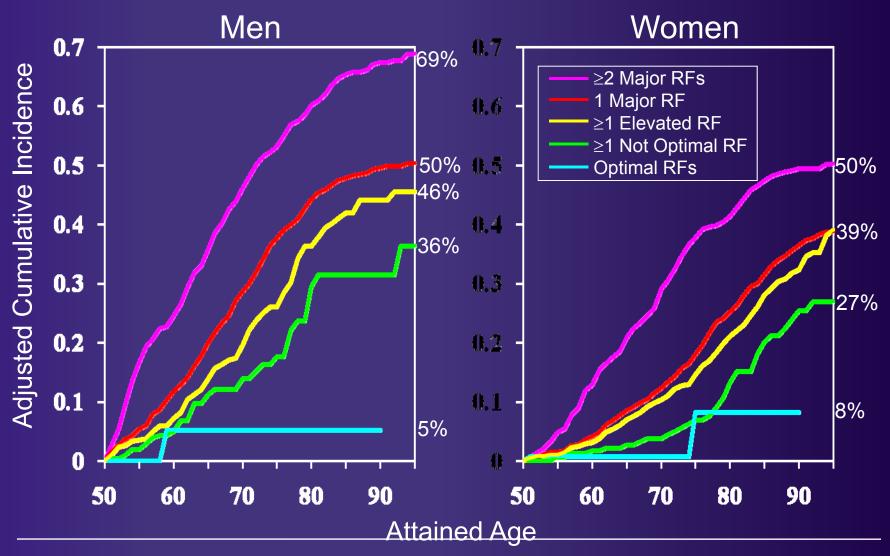

KMCI vs. Lifetime Risk for CHD Age 40




Lifetime Risk for CHD by Age and Sex


Lifetime Risk for CHF by Age and Sex

Lifetime Risk for ASCVD Total Cholesterol at Age 50


Aggregate Risk Factor Burden

	All Optimal	Not Optimal	Elevated	1 Major ≥2 Major
SBP/	<120 and	120-139 or	140-159 or	≥160 or
DBP	<80	80-89	90-99	≥100
ТС	<180	180-199	200-239	≥240
DM	No	No	No	Yes
Smoking	No	No	No	Yes

Lloyd-Jones, *Circulation* 2006; 113: 791-798

Lifetime Risk for ASCVD by RF Strata Framingham Heart Study, Age 50

Lifetime Risks for Common Diseasesmat Age 40

Disease	Men	Women
Any CVD*	>1 in 2	>1 in 2
CHD ¹	1 in 2	1 in 3
AF ²	1 in 4	1 in 4
CHF ³	1 in 5	1 in 5
Stroke ⁴	1 in 5	1 in 5
Hip fracture ⁵	1 in 20	1 in 6
Breast cancer ^{6,7}	1 in 1000	1 in 8
Prostate cancer ⁶	1 in 6	
Lung cancer ⁶	1 in 12	1 in 17
Colon cancer ⁶	1 in 16	1 in 17
Diabetes ⁸	1 in 3	1 in 3

^{*} Unpublished data, FHS. 1. Lloyd-Jones, Lancet 1999. 2. Lloyd-Jones Circulation 2004. 3. Lloyd-Jones, Circulation 2002. 4. Seshadri, Stroke 2006. 5. Cummings, Arch Intern Med 1989. 6. SEER cancer statistics review, 1975-2000. 7. Feuer, J Natl Cancer Inst 1993. 8. Narayan, JAMA 2003.

Lifetime Risk for CVD: Current Status pre-LRPP

- Until recently, all estimates from white cohorts
 - Lifetime risks for CVD in blacks (other race/ethnic groups) unknown
 - o Blacks have higher RF burden for some RFs
 - o Blacks have higher short-term CHD and stroke rates
 - o Blacks (esp men) also have higher all-cause and non-CVD mortality
 - o Effects on lifetime risk?
- Cls around estimates for lifetime risks by RF burden are wide, especially for low risk groups
- Further research needed to understand burden of CVD now and in future

The Cardiovascular Lifetime Risk Pooling Project

Rationale

- Robust estimates of long-term/lifetime risk by age, sex, race or RF status infeasible from single cohort studies
- Pooling of cohort studies smooths birth cohort effects present in single cohorts
- Other pooling projects (GBD, PSC, ERFC, etc.) have not focused on long-term risks

Objective

 To collect and pool high-quality longitudinal data from community- and population-based cohorts in order to provide estimates for long-term and lifetime risks of CVD in the general US population and in subgroups

The Cardiovascular Lifetime Risk Pooling Project

- Criteria for cohort inclusion
 - Community- or population-based (not from RCT)
 - Directly measured RFs
 - ≥10 years' follow up

The Cardiovascular Lifetime Risk Pooling Project

- Methods 18 datasets collected
 - Limited access datasets from NHLBI
 - ARIC, FHS, FOS, HHP, PRHHP
 - Datasets from NCHS
 - NHEFS, NHANES II Mortality, NHANES III FU Studies
 - University of Michigan IUC
 - EPESE, Hisp EPESE, Kaiser Old, Tecumseh
 - Internal study datasets
 - CHS, MRFIT screenees, WHI-OS
 - NU DPM datasets
 - CHA, PG, WE
- Next: Much gnashing of teeth

Issues in Pooling Datasets

- Similarity/appropriateness of cohorts
 - Selection criteria
 - Exclusion criteria
- Exposure ascertainment
 - Blood pressure
- Outcomes ascertainment
 - Adjudication vs administrative data
- Aligning data points
 - Person-exams by age

Lifetime Risk Pooling Project

Cohort	Age at	Baseline	Wh	iite	Bla	ack	Hisp	oanic	As	ian
Conort	Entry	Exam	Men	Women	Men	Women	Men	Women	Men	Women
ARIC	45-64	1987-89	5429	6036	1631	2639				
CHS	65-100	1989-93	2152	2813	343	580				
СНА	18-74	1967-73	20195	14358	1494	2329				
EPESE	- 01	\sim	\sim				-1:-	.: .1.		
FHS	>6	20,0	UU	uni	au	e ir	Idiv	/Iau	lais	
FOS					-					
Hisp EPES	~11	1 mil	lior	n n	-\/ C	of fo		\	ın	
Honolulu	- 1			י ף־	y C			VV C	ıρ	
Kaiser Ol	r	α			- l -	_ 4				50
MRFIT sc:	DD.	000		/ レ	aea	atna	S			
NHEFS	•									
NHANES	660	$00 \mathrm{n}$	on-	fat	al N					
People's (OO		OI I	Tati	ai i	VIIS				
People's (111) h	.	L_1	- L -	1				
Puerto Ri	44($00 \mathrm{n}$	on-	Tat	ai s	STro	Kes	5		
Tecumsel										
WE	40-59	1957-58	2057		47					
WHI-OS	50-79	1993-98		78013		7639		2623		3741
Total (N=620612)			384672	135135	29639	17137	17800	4382	8056	3791

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

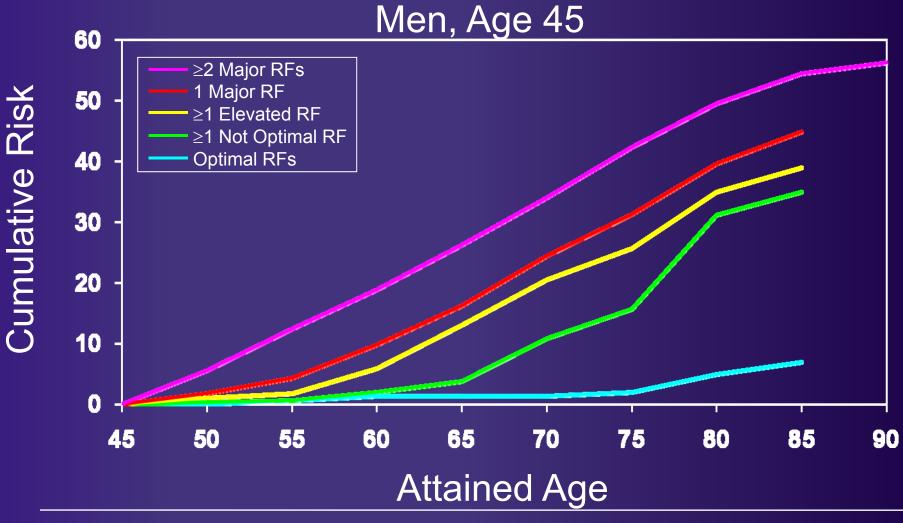
Lifetime Risks of Cardiovascular Disease

Jarett D. Berry, M.D., Alan Dyer, Ph.D., Xuan Cai, M.S., Daniel B. Garside, B.S., Hongyan Ning, M.D., Avis Thomas, M.S., Philip Greenland, M.D., Linda Van Horn, R.D., Ph.D., Russell P. Tracy, Ph.D., and Donald M. Lloyd-Jones, M.D.

N Engl J Med 2012; 366; 321-329

Prevalence (%) of RF Strata at Selected Index Ages

		Index Age (y)							
	4	5	5	55		65		75	
RF Burden	M	M W M W		M	W	M	W		
All Optimal	2.9	7.1	2.9	3.6	2.8	1.7	2.8	1.3	
≥1 Not Optimal	9.5	14.4	8.2	8.4	8.8	6.6	10.0	6.4	
≥1 Elevated	19.1	22.0	18.8	21.5	19.2	18.8	20.4	18.2	
1 Major	46.5	40.1	45.9	40.7	44.2	41.6	43.3	43.3	
≥2 Major	22.0	16.4	24.2	25.8	25.0	31.3	23.5	30.8	



Prevalence (%) of RF Strata at Selected Index Ages

		Index Age (y)						
	4	45 55		65		75		
RF Burden	M	W M W		M	W	M	W	
All Optimal	2.9	7.1	2.9	3.6	2.8	1.7	2.8	1.3
≥1 Not Optimal	9.5	14.4	8.2	8.4	8.8	6.6	10.0	6.4
≥1 Elevated	19.1	22.0	18.8	21.5	19.2	18.8	20.4	18.2
1 Major	46.5	40.1	45.9	40.7	44.2	41.6	43.3	43.3
≥2 Major	22.0	16.4	24.2	25.8	25.0	31.3	23.5	30.8

Lifetime Risks for All ASCVD Cardiovascular Lifetime Risk Pooling Project

Lifetime Risks* for ASCVD: Men

RF Burden	Index Age						
Kr buruen	Age 45*	Age 55*	Age 65†	Age 75†			
All Optimal	1.4% (0-3.4)	14.6% (1.0-28.3)	29.5% (17.0-42.0)	17.5% (3.0-32.0)			
≥1 Not Optimal	31.2% (17.6-44.7)	19.7% (11.9-27.4)	29.4% (20.7-38.1)	22.8% (14.4-31.2)			
≥1 Elevated	35.0% (26.8-43.2)	33.9% (27.9-39.8)	38.2% (32.4-43.9)	28.9% (22.7-35.2)			
1 Major	39.6% (35.7-43.6)	32.2% (29.1-35.2)	37.2% (33.7-40.8)	36.1% (31.6-40.5)			
≥2 Major	49.5% (45.0-53.9)	46.8% (43.0-50.7)	49.5% (45.2-53.8)	38.5% (32.0-45.0)			

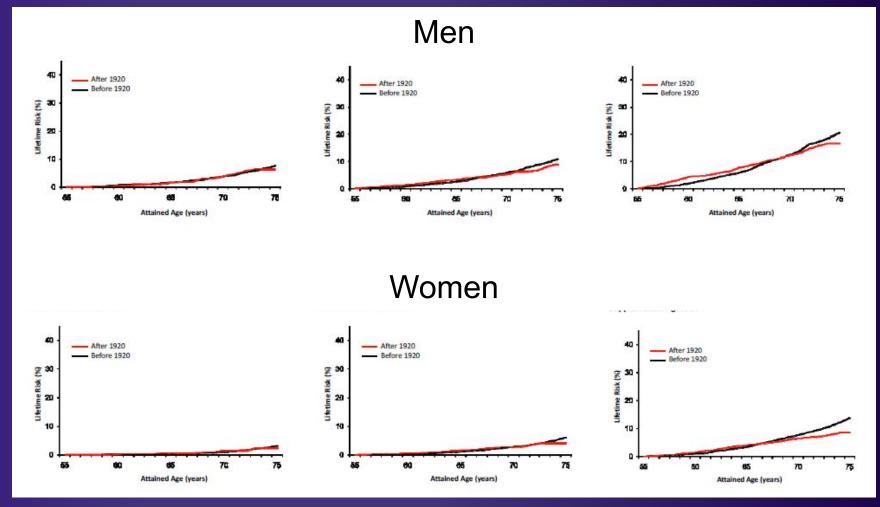
^{*} To age 80; † to age 90

I

Lifetime Risks* for ASCVD: Women

RF Burden	Index Age						
Kr buruen	Age 45*	Age 55*	Age 65†	Age 75†			
All Optimal	4.1% (0-8.2)	10.1% (0-25.0)	12.4% (2.8-22.0)	12.4% (0-25.6)			
≥1 Not Optimal	12.2% (4.6-19.7)	13.3% (5.5-21.1)	25.0% (15.4-34.5)	19.9% (10.9-29.0)			
≥1 Elevated	15.6% (10.3-20.9)	15.3% (11.3-19.3)	29.3% (23.8-34.7)	21.8% (16.8-26.8)			
1 Major	20.2% (17.2-23.2)	16.7% (14.5-19.0)	31.9% (28.8-34.9)	29.4% (26.1-32.7)			
≥2 Major	30.7% (26.3-35.0)	29.2% (26.2-32.3)	38.7% (35.3-42.1)	36.3% (32.2-40.4)			

^{*} To age 80; † to age 90



Internal Validation

- Check for similar patterns in adjusted cumulative incidence curves in each cohort before pooling
- Happily, these have always been there!
 - Range of absolute values
 - Very similar relative and absolute risk estimates once stratified by aggregate RF burden

Birth Cohort Effects

1 Elevated RF

1 Major RF

≥2 Major RFs

...Similar patterns seen in NHANES I, II, and III cohorts

Summary

- Lifetime risks for CVD are overall high
- Differences in risk factor burden in middle and older ages associated with marked differences in remaining LR for CVD
 - ...despite similar short-term risks
 - Optimal risk profile associated with very low LRs
 - 7- to 30-fold gradient in LR for 45 yo men and women
- LRs similar in whites and blacks
 - ... but for different reasons
- LRs similar across birth cohorts

Implications

- Competing risks are important to consider in long-term risk estimation
- Effect of RFs remarkably consistent over time and across races and birth cohorts
- Secular trends of declining CVD rates due to changes in prevalence of RFs>>effect of RFs

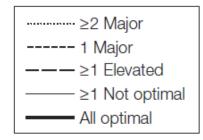
CLINICIAN'S CORNER

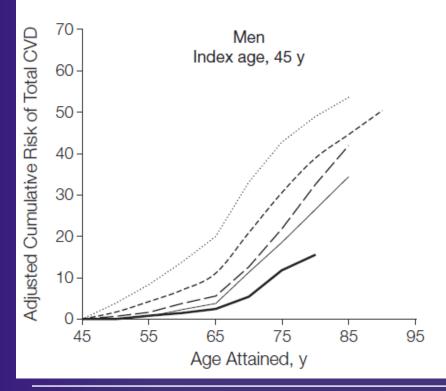
Scan for Author Video Interview

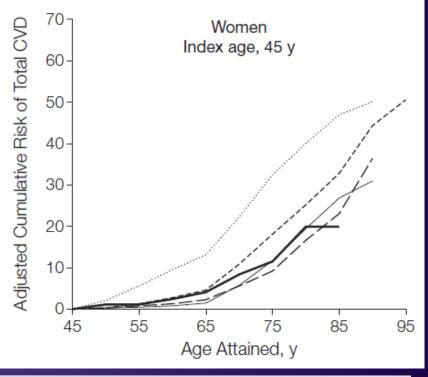
Lifetime Risk and Years Lived Free of Total Cardiovascular Disease

John T. Wilkins, MD, MS
Hongyan Ning, MD, MS
Jarett Berry, MD, MS
Lihui Zhao, PhD
Alan R. Dyer, PhD
Donald M. Lloyd-Jones, MD, ScM

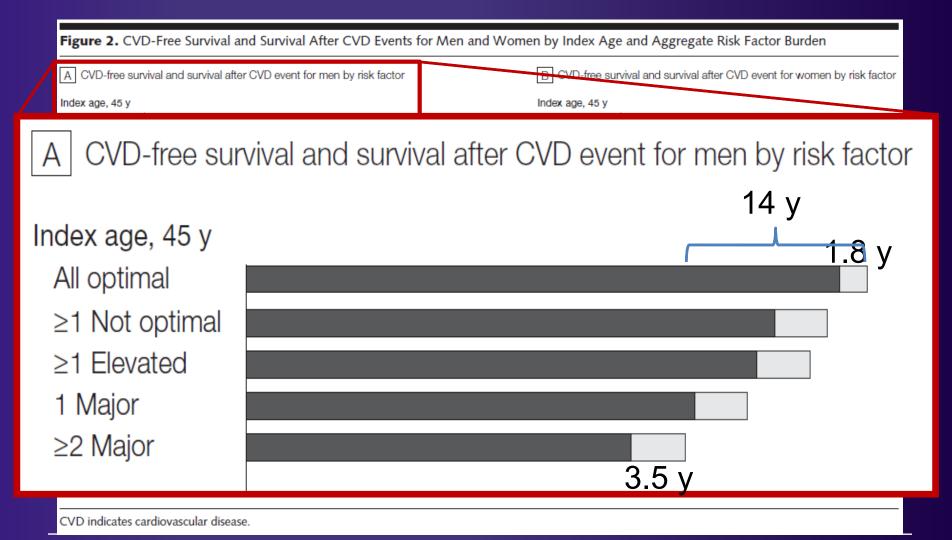
Context Estimates of lifetime risk for total cardiovascular disease (CVD) may provide projections of the future population burden of CVD and may assist in clinician-patient risk communication. To date, no lifetime risk estimates of total CVD have been reported.


Objectives To calculate lifetime risk estimates of total CVD by index age (45, 55, 65, 75 years) and risk factor strata and to estimate years lived free of CVD across risk factor strata.


Design, Setting, and Participants Pooled survival analysis of as many as 905 115 person-years of data from 1964 through 2008 from 5 National Heart, Lung, and Blood


- LR for Total CVD (CHD, Stroke, HF, CVD death):
 - Men: 60%; Women: 56%
 - Varies by aggregate RF burden

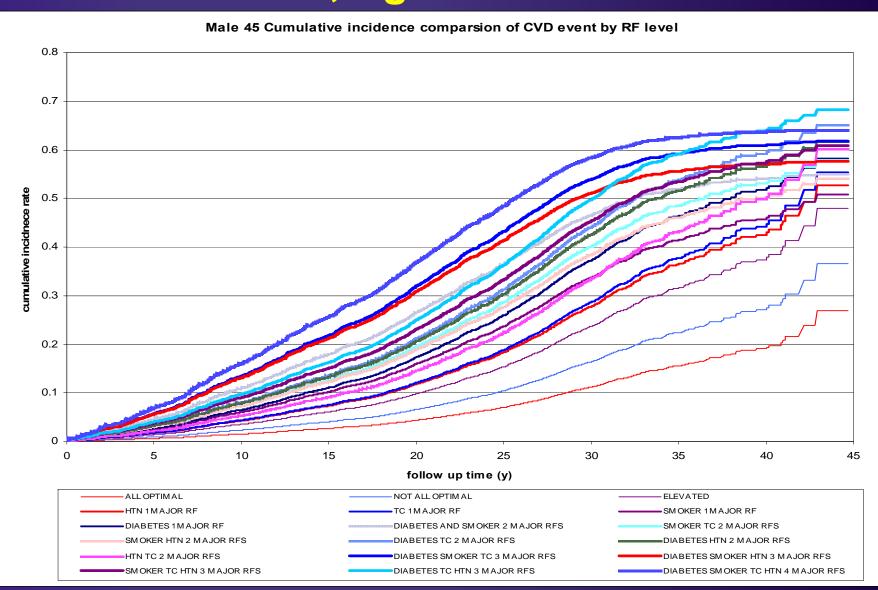
Lifetime Risk for Total CVD by Aggregate RF Burden: Age 45

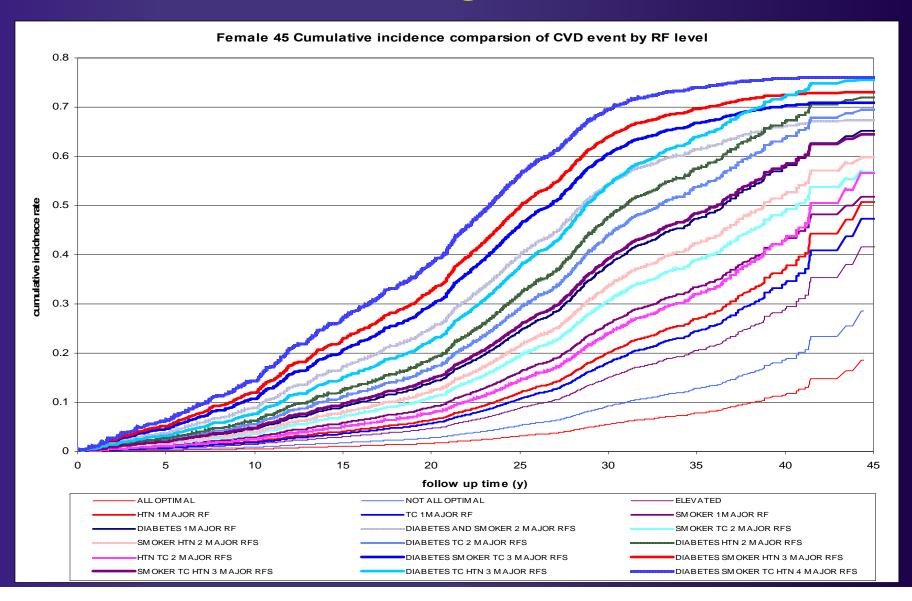


Compression of Morbidity: Methods

- Censoring precludes estimation of mean CVD-free and overall survival times
- Irwin's restricted mean
 - Mean of the survival time restricted to a given time point
 - Mathematically equivalent to the area under the survival curve up to the selected restriction time
 - For each index age the restriction time point was set as 95 years old or the oldest age such that the SE of the survival estimate is ≤10%

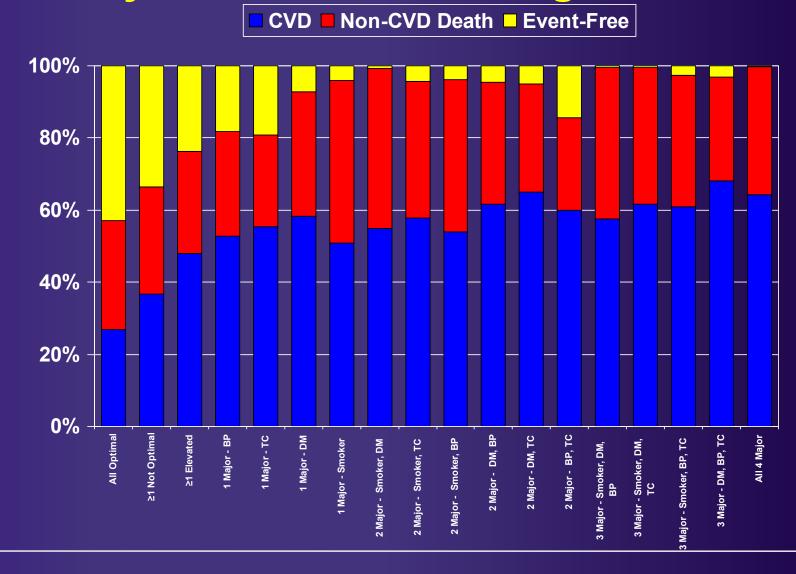
Compression of Morbidity



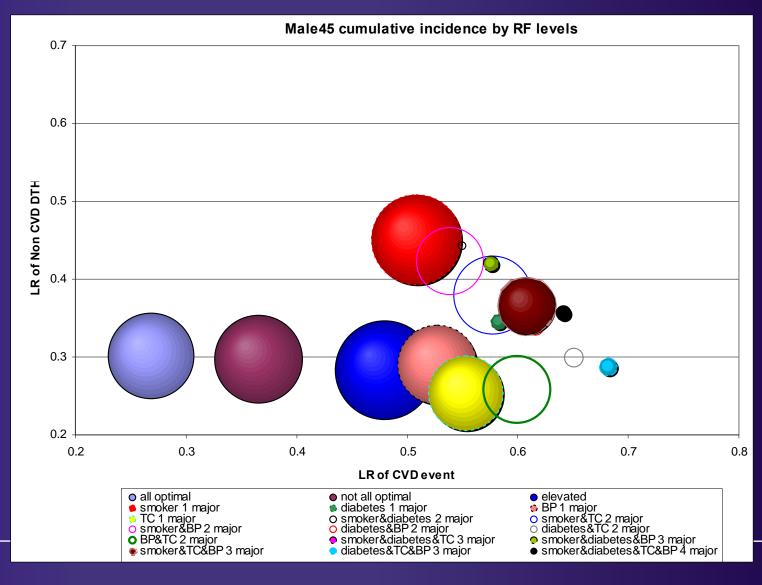

Competing Cox Methodology

- Lets the outcomes compete to be first,
 rather than considering them one at a time
- Provides robust estimates of hazards and cumulative incidences for multiple endpoints simultaneously
 - And gives a total cumulative incidence for events through the end of follow up

Competing CI for CVD Events by RF Burden: Male, Age 45



Competing CI for CVD Events by RF Burden: Female, Age 45



Competing CI for CVD and Non-CVD Events by RF Burden: Male, Age 45

Competing CI for CVD Events and Non-CVD Death by RF Burden: Male, Age 45

Racial Differences in Risks for First Cardiovascular Events and Noncardiovascular Death

The Atherosclerosis Risk in Communities Study, the Cardiovascular Health Study, and the Multi-Ethnic Study of Atherosclerosis

Matthew Feinstein, MD; Hongyan Ning, MD, MS; Joseph Kang, PhD; Alain Bertoni, MD, MPH; Mercedes Carnethon, PhD; Donald M. Lloyd-Jones, MD, ScM

Competing vs Standard Cox Models (B vs W)

	Me	n*	Women*			
	Competing Risks Method (Fine and Gray Method)	Standard Cox Model Method	Competing Risks Method (Fine and Gray Method)	Standard Cox Model Method		
Model 1: unadjusted						
Non-CVD death	1.87 (1.53, 2.29)	1.76 (1.49, 2.07)	1.39 (1.10, 1.77)	1.59 (1.33, 1.90)		
CHD death/nonfatal MI	0.77 (0.60, 1.00)	1.06 (0.90, 1.26)	1.24 (0.94, 1.65)	1.72 (1.40, 2.10)		
Stroke	2.18 (1.63, 2.90)	2.37 (1.84, 3.04)	2.91 (2.15, 3.92)	2.92 (2.23, 3.82)		
HF	1.17 (0.91, 1.49)	1.24 (1.02, 1.50)	2.07 (1.65, 2.59)	2.14 (1.78, 2.57)		
Other CVD death	1.85 (1.34, 2.56)	N/A	2.20 (1.42, 3.42)	N/A		
Any CVD event (overall)	1.27 (1.11, 1.45)	1.29 (1.14, 1.46)	2.03 (1.76, 2.34)	2.07 (1.81, 2.37)		

External validation

Lifetime risk for cancer death by sex and smoking status: the lifetime risk pooling project

Andrew Gawron · Lifang Hou · Hongyan Ning · Jarett D. Berry · Donald M. Lloyd-Jones

External validation

Table 1 Cohort characteristics and proportion of participants with death from cancer during observed follow-up

Table 1 Conon cha	nactoristics an	id proportion c	or participants	with death	i iioiii caik	cer during oo	serveu re	mow-up			
	ARIC	CHA	FHS	FHSOFF	HHP	HISEP	NHEF	NHEFII	PRHHP	WHI-OS	
Total N	15,371	33,902	5,079	4,739	8,006	3,042	11,399	12,504	9,475	91,294	
Entry age, mean (years)	54.2	40.4	44.2	36.9	54.4	74.6	49.8	46.2	54.9	63.6	
Entry age, range (years)	45–64	18–90	28–64	20–62	45–68	65–99	25–74	18–74	47–77	50–79	
Follow-up years, mean	10.8	29	35.5	24.1	21.3	5.4	16.2	13.2	14.2	7.7	
Follow-up years, range	0.0–13.1	0.1–37.0	24.0–54.8	0.1-31.6	7.0–33.1	0.0–7.9	0–22.1	0.0–16.0	14.0–20.0	0.1-10.6	
Cancer deaths (%)	61 (0.4)	3,987 (10.5)	1,034 (20.4)	260 (5.5)	1,532 (19.1)	106 (3.5)	982 (8.7)	568 (4.5)	212 (2.2)	2,575 (2.8)	
	Pooled cohe	orts									
Index age (years)	Male		Female	Female		Total follow-up		Cancer deaths	s, N Tot	V Total deaths, N	
	Smokers	Non-smokers	Smokers	s Non-s	smokers	(person-years)					
45	4,586	3,823	1,827	2,492		164,212		1,375	3,94	42	
55	7,266	6,635	1,729	3,057		203,993		2,583	8,81	15	
65	3,463	4,081	1,071	2,801		108,590		1,678	6,99	90	
75	601	711	358	1,548		24,088		463	2,35	56	

ARIC Atherosclerosis Risk in Communities, CHA Chicago Heart Association, FHS Framingham Heart Study, FHOSFF Framingham Heart Study Offspring Cohort, HHP Healthy Heart Program, HISEP Hispanic Established Populations for Epidemiologic Studies of the Elderly, NHEF National Health and Nutrition Examination Survey, NHEFII National Health and Nutrition Examination Survey II, PRHHP Puerto Rico Heart Health Program, WHI Women's Health Initiative Observational Study

External validation

Table 2 Lifetime risks for death from cancer at selected index ages to age 90 (% and 95 % CI), by individual cohort and compared to SEER national surveillance data

			0 0	,	· · •	*			
Index ages (years)	СНА	FHS	ННР	HISEP	NHEF	NHEFII	PRHP	WHI-OS	SEER
Male									
45	22.7 (21.7–23.6)	22.8 (21.0–24.5)	26.8 (25.6–28.0)	N/A	15.6 (13.9–17.4)	21.0 (18.4–23.6)	N/A	N/A	22.3
55	22.7 (21.5–23.8)	22.8 (21.0–24.6)	26.8 (25.5–28.0)	N/A	14.7 (12.9–16.5)	20.5 (17.8–23.2)	12.3 (8.4–16.3)	N/A	22.3
65	21.3 (19.3–23.4)	22.4 (20.5–24.4)	25.5 (24.1–26.9)	7.6 (5.0–10.2)	12.2 (10.4–14.0)	18.6 (15.8–21.4)	11.9 (7.7–16.1)	N/A	20.9
75	20.8 (12.3–29.4)	19.9 (17.6-22.3)	23.8 (21.6–26.0)	6.8 (4.1–9.5)	7.7 (5.5–10.0)	15.9 (11.9–20.0)	8.3 (3.1–13.5)	N/A	16.8
Female									
45	18.3 (17.3–19.2)	18.5 (17.0–20.0)	N/A	N/A	17.4 (15.7–19.0)	13.0 (11.3–14.8)	N/A	N/A	17.8
55	17.1 (16.0–18.2)	18.0 (16.5–19.5)	N/A	N/A	12.1 (10.6–13.6)	11.8 (10.1–13.5)	N/A	20.7 (11.5–30.0)	17.2
65	16.4 (14.4–18.5)	15.9 (14.4–17.4)	N/A	11.0 (8.3–13.7)	8.9 (7.4–10.3)	9.5 (7.9–11.1)	N/A	19.6 (10.1–29.1)	15.4
75	10.1 (4.7–15.5)	12.2 (10.6–13.8)	N/A	10.0 (7.1–13.0)	6.2 (4.3-8.0)	7.0 (4.9–9.2)	N/A	17.3 (7.0–27.6)	11.6

CHA Chicago Heart Association, FHS Framingham Heart Study, HHP Healthy Heart Program, HISEP Hispanic Established Populations for Epidemiologic Studies of the Elderly, NHEF National Health and Nutrition Examination Survey II, PRHHP Puerto Rico Heart Health Program, WHI Women's Health Initiative Observational Study, SEER Surveillance Epidemiology and End Results (http://seer.cancer.gov)

MEN	One Measurement N=18,026	Two Measurements N=1,316
TC <160 mg/dL	21.3 (17.1-25.4)	6.2 (0-14.7)
TC 160-199 mg/dL	24.9 (23.1-26.7)	22.7 (15.1-24.1)
TC 200-239 mg/dL	30.9 (29.4-32.5)	43.5 (36.5-50.5)
TC ≥ 240 mg/dL or Rx	38.7 (36.7-40.6)	45.6 (39.2-52.0)
WOMEN	One Measurement	Two Measurements
WOMEN	One Measurement N=15,274	Two Measurements N=1,200
WOMEN TC <160 mg/dL		
	N=15,274	N=1,200
TC <160 mg/dL	N=15,274 10.2 (3.6-16.8)	N=1,200 0

Take Home Observations

- You can make useful new insights through data mining
 - But don't make a career out of it
- Traditional RFs have fairly universal relative associations with CVD incidence/prevalence
 - But to understand local incidence need local hazard functions and RF prevalence/burden info
- Competing risks should be a part of our thinking from the population/prevention perspective

Acknowledgments

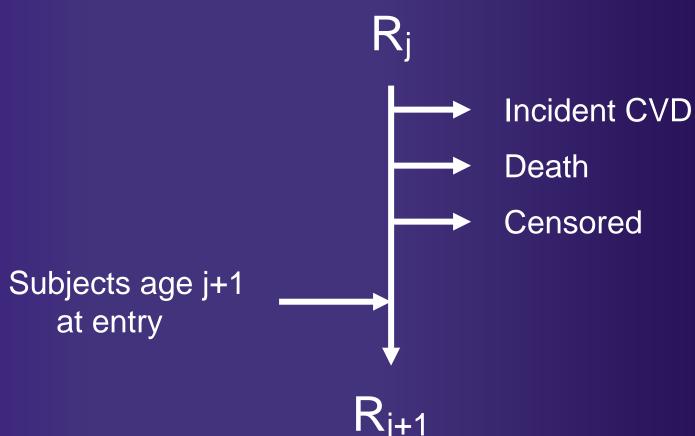
- NHLBI R21 & LADs
- Sean Coady, NHLBI

	INU
Alan Dyer	Mark Huffman
Jarett Berry	John Wilkins
Dan Garside	Chintan Desai
Shelly Cai	Ranya Sweis
Hongyan Ning	Joseph Kang
Linda Van Horn	Lihui Zhao
Phil Greenland	<u>U Minn</u>
Nori Allen	Avis Thomas

FHS/NHLBI Dan Levy Marty Larson Ralph D'Agostino Alexa Beiser Peter Wilson Jim Cleeman Sudha Seshadri

Managing, Pooling and Evaluating Large Datasets

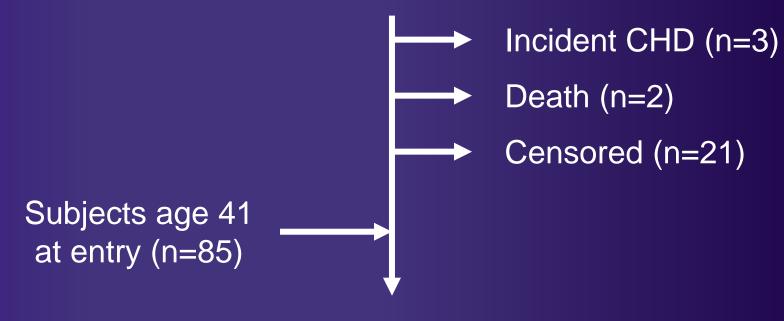
WHF ELF


Donald M. Lloyd-Jones, MD ScM Senior Associate Dean Chair and Professor of Preventive Medicine Northwestern Feinberg School of Medicine

I

Methods - Lifetime Risk Calculation

Risk set for age j during F/U



I

Methods - Lifetime Risk Calculation

Risk set for age j during F/U

$$R_{40} = 57 + 1281 = 1338$$

$$R_{41} = 1397$$

M

Methods - Lifetime Risk Calculation

- Kaplan-Meier estimate
 - Hazard: h_j = e_j / R_j
 - Age-specific incidence: f_j = h_j x S_{j-1}
 - Where e_j = number of events at age j, F_{39} = 0, and S_{39} = 1
 - Cumulative incidence: $F_j = \sum_{i=40}^{j} f_i$
 - Survival probability: S_j = 1 − F_j

Methods - Lifetime Risk Calculation

- Cumulative incidence (F_j) does not reflect competing risk of death from other causes
 - Decedents counted as withdrawals
 - Assumed to have same risk of CVD as those censored alive
 - Subjects who die free of CVD before age j have escaped CVD, therefore future risk = 0
- Therefore, a separate survival curve, U_j, calculated with death included as an event rather than a withdrawal

M

Methods - Lifetime Risk Calculation

- Adjusted cumulative risk
 - $\bullet f_j^* = h_j \times U_{j-1}$
 - $F_j^* = \Sigma_{i=40} f_j^*$
 - $S_i^* = 1 F_i^*$
- Same method used to generate curves for index starting ages other than 40
- 95% Cl calculated as per Gaynor et al (J Am Stat Assoc 1993; 88:402)

Methods - Lifetime Risk Calculation

Survival Analysis = Σ (Hazard x Survival Probability)

- K-M estimate
 - Hazard:

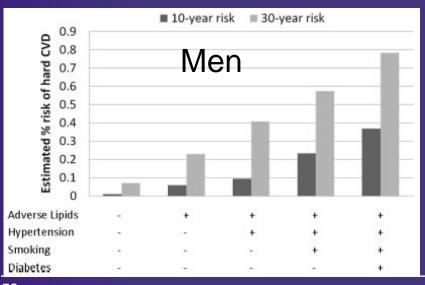
h = Events/Risk set

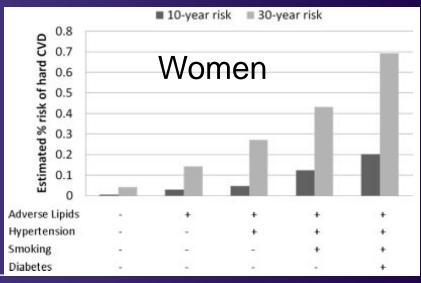
Survival Probability: Survival Probability:

1 - Events
Risk Set

- Lifetime risk estimate
 - Hazard:

h = Events/Risk set




Can't we just take the 10-year risk estimate and fudge it to give us a long-term risk estimate?

10-Year vs. 30-Year Risks for CVD

- Rank order generally maintained
- Estimating 30 year risk
 - 10-year risk x3 does not work (underestimates risk)
 - Updating age does not work (overestimates high/underestimates low risk)
 - Unadjusted model does not work (overestimates risk)

