Observations on US CVD Prevention Guidelines

Donald M. Lloyd-Jones, MD ScM FACC FAHA
What are Guidelines?
Evidence Base for Guidelines

Scientific Evidence Underlying the ACC/AHA Clinical Practice Guidelines

Pierluigi Tricoci, MD, MHS, PhD
Joseph M. Allen, MA
Judith M. Kramer, MD, MS
Robert M. Califf, MD
Sidney C. Smith Jr, MD

Context The joint cardiovascular practice guidelines of the American College of Cardiology (ACC) and the American Heart Association (AHA) have become important documents for guiding cardiology practice and establishing benchmarks for quality of care.

Objective To describe the evolution of recommendations in ACC/AHA cardiovascular guidelines and the distribution of recommendations across classes of recommen-

Tricoci, JAMA 2009
Evidence Base for Guidelines

<table>
<thead>
<tr>
<th>Disease guidelines</th>
<th>Year</th>
<th>Class of Recommendations</th>
<th>Level of Evidence</th>
<th>No./Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>2006</td>
<td>41/111 (36.9)</td>
<td>55/111 (49.5)</td>
<td>15/111 (13.5)</td>
</tr>
<tr>
<td>Heart failure</td>
<td>2005</td>
<td>66/129 (51.2)</td>
<td>44/129 (41.1)</td>
<td>19/129 (14.7)</td>
</tr>
<tr>
<td>Peripheral artery disease</td>
<td>2005</td>
<td>147/237 (62.6)</td>
<td>68/237 (28.1)</td>
<td>22/237 (9.4)</td>
</tr>
<tr>
<td>STEMI</td>
<td>2004</td>
<td>248/422 (58.8)</td>
<td>123/422 (29.1)</td>
<td>51/422 (12.1)</td>
</tr>
<tr>
<td>Perioperative evaluation</td>
<td>2007</td>
<td>13/50 (26.0)</td>
<td>27/50 (54.0)</td>
<td>10/50 (20.0)</td>
</tr>
<tr>
<td>Secondary prevention</td>
<td>2006</td>
<td>38/48 (79.2)</td>
<td>10/48 (20.8)</td>
<td>0/48</td>
</tr>
<tr>
<td>Stable angina</td>
<td>2002</td>
<td>78/235 (33.2)</td>
<td>98/235 (41.7)</td>
<td>59/235 (25.1)</td>
</tr>
<tr>
<td>Supraventricular arrhythmias</td>
<td>2003</td>
<td>61/147 (41.5)</td>
<td>77/147 (52.4)</td>
<td>9/147 (6.1)</td>
</tr>
<tr>
<td>Unstable angina</td>
<td>2007</td>
<td>167/298 (56.3)</td>
<td>82/298 (27.5)</td>
<td>29/298 (9.7)</td>
</tr>
<tr>
<td>Valvular heart disease</td>
<td>2008</td>
<td>156/320 (48.8)</td>
<td>124/320 (38.8)</td>
<td>40/320 (12.5)</td>
</tr>
<tr>
<td>Ventricular arrhythmias and sudden cardiac death</td>
<td>2006</td>
<td>103/217 (47.5)</td>
<td>100/217 (46.1)</td>
<td>14/217 (6.5)</td>
</tr>
</tbody>
</table>

Summary

| Summary of disease guidelines, median (IQR), % | 48.8 (39.2-60.7) | 38.8 (28.6-47.8) | 12.1 (8.0-14.1) | 12.0 (8.1-19.1) | 39.1 (30.8-51.4) | 54.3 (30.8-57.5) | 0 |
| Summary of all guidelines, median (IQR), % | 46.4 (33.2-57.1) | 41.0 (29.1-50.7) | 13.1 (9.4-20.0) | 11.4 (5.8-16.2) | 39.4 (31.3-57.1) | 47.5 (25.9-56.9) | 0 |

Tricoci, JAMA 2009
From 2011 IOM Report: Making Guidelines Better

To be trustworthy, guidelines should:

- Be based on a systematic review of the existing evidence;
- Be developed by a knowledgeable, multidisciplinary panel of experts and representatives from key affected groups;
- Consider important patient subgroups and patient preferences, as appropriate;
- Be based on an explicit and transparent process that minimizes distortions, biases, and conflicts of interest;
- Provide a clear explanation of the logical relationships between alternative care options and health outcomes, and
- Provide ratings of both the quality of evidence and the strength of the recommendations; and
- Be reconsidered and revised as appropriate when important new evidence warrants modifications of recommendations.
2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults

Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation, American Pharmacists Association, American Society for Preventive Cardiology, Association of Black Cardiologists, Preventive Cardiovascular Nurses Association, and WomenHeart: The National Coalition for Women with Heart Disease
NHLBI Charge to the Expert Panel

Evaluate higher quality randomized controlled trial (RCT) evidence for cholesterol-lowering drug therapy to reduce ASCVD risk

- Use Critical Questions (CQs) to create the evidence search from which the guideline is developed
 - Cholesterol Panel: 3 CQs
 - Risk Assessment Work Group: 2 CQs
 - Lifestyle Management Work Group: 3 CQs

- RCTs and systematic reviews/meta-analyses of RCTs independently assessed as fair-to-good quality

- Develop recommendations based on RCT evidence
Systematic Review Process

- The Expert Panel constructed CQs relevant to clinical practice.
- The Expert Panel identified (a priori) inclusion/exclusion (I/E) criteria for each CQ.
- An independent contractor developed a literature search strategy, based on I/E criteria, for each CQ.
- An independent contractor executed a systematic electronic search of the published literature from relevant bibliographic databases for each CQ.
- The date for the overall literature search was from January 1, 1995 through December 1, 2009.
- However, RCTs with the ASCVD outcomes of MI, stroke and cardiovascular death published after that date were eligible for consideration until July 2013.
A recommendation with Level of Evidence B or C does not imply that the recommendation is weak. Many important clinical questions addressed in the guidelines do not lend themselves to clinical trials. Although randomized trials are unavailable, there may be a very clear clinical consensus that a particular test or therapy is useful or effective.

*Data available from clinical trials or registries about the usefulness/efficacy in different subpopulations, such as sex, age, history of diabetes, history of prior myocardial infarction, history of heart failure, and prior aspirin use.

†For comparative effectiveness recommendations (Class I and IIa; Level of Evidence A and B only), studies that support the use of comparator verbs should involve direct comparisons of the treatments or strategies being evaluated.
Guideline Scope

• Focus on *treatment of blood cholesterol to reduce ASCVD risk in adults*

• Emphasize adherence to a heart healthy lifestyle
 ▪ See Lifestyle Management Guideline

• Identify individuals *most likely to benefit from cholesterol-lowering therapy*
 ▪ 4 statin benefit groups

• Identify safety issues
4 Evidence-Based Statin Benefit Groups

- Clinical ASCVD
- LDL–C \geq190 mg/dL without secondary cause
- Primary prevention/Diabetes: Age 40-75 years, LDL–C 70-189 mg/dL
- Primary prevention/No Diabetes: Age 40-75 years, LDL–C 70-189 mg/dL, ASCVD risk \geq7.5%*

* Requires risk discussion with clinician before statin prescription. Statin therapy may be considered if risk decision is uncertain after use of ASCVD risk calculator.
New Perspective on LDL–C & Non-HDL–C Goals

• Lack of RCT evidence to support titration of drug therapy to specific LDL–C and/or non-HDL–C goals
• Strong evidence that *appropriate intensity of statin therapy* should be used to reduce ASCVD risk *in those most likely to benefit*
• Quantitative comparison of statin benefits with statin risk
• Nonstatin therapies – did not provide ASCVD risk reduction benefits or safety profiles comparable to statin therapy
Why Not Continue to Treat to Target?

Major difficulties:

1. Current RCT data do not indicate what the target should be
2. Unknown magnitude of additional ASCVD risk reduction with one target compared to another
3. Unknown rate of additional adverse effects from multidrug therapy used to achieve a specific goal
4. Therefore, unknown net benefit from treat-to-target approach
CTT 2012

RRR Similar; Absolute Risk Rules

<table>
<thead>
<tr>
<th>5-year MVE risk at baseline</th>
<th>Events (% per annum)</th>
<th>RR (CI) per 1.0 mmol/L reduction</th>
<th>Trend test in LDL cholesterol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Statin/more Control/less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants without vascular disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><5%</td>
<td>148 (0.35)</td>
<td>229 (0.53)</td>
<td></td>
</tr>
<tr>
<td>≥5% to <10%</td>
<td>487 (1.02)</td>
<td>716 (1.53)</td>
<td></td>
</tr>
<tr>
<td>≥10% to <20%</td>
<td>854 (2.52)</td>
<td>1003 (2.98)</td>
<td></td>
</tr>
<tr>
<td>≥20% to <30%</td>
<td>294 (4.40)</td>
<td>351 (5.28)</td>
<td></td>
</tr>
<tr>
<td>≥30%</td>
<td>121 (7.29)</td>
<td>126 (8.16)</td>
<td></td>
</tr>
<tr>
<td>Subtotal</td>
<td>1904 (1.44)</td>
<td>2425 (1.84)</td>
<td></td>
</tr>
</tbody>
</table>

Helping Cardiovascular Professionals

American Heart Association®
Primary Prevention
Global Risk Assessment

• To estimate 10-year ASCVD risk
 ▪ New Pooled Cohort Risk Equations
 ▪ White and black men and women
• More accurately identifies higher risk individuals for statin therapy
 ▪ Focuses statin therapy on those most likely to benefit
 ▪ You may wish to avoid initiating statin therapy in high-risk groups found not to benefit (higher grades of heart failure and hemodialysis)
Primary Prevention
Statin Therapy

• Thresholds for initiating statin therapy derived from RCTs (not from calculator)

• Before initiating statin therapy, clinicians and patients engage in a discussion of the potential for ASCVD risk reduction benefits, potential for adverse effects, drug-drug interactions, and patient preferences
Primary Prevention
Initiating Statin Therapy

No Clinical ASCVD
Not currently on cholesterol-lowering drugs
Initial evaluation prior to statin initiation
- Fasting lipid panel*
- ALT
- Hemoglobin A1c (if diabetes status unknown)
- CK (if indicated)
- Consider evaluation for other secondary causes (Table 6) or conditions that may influence statin safety (Table 8, Rec 1)

Assign to statin benefit group
(Figure 2)
Counsel on healthy lifestyle habits

Diabetes and age 40-75 y†
OR
LDL–C ≥190 mg/dL

No diabetes, age 40-75 y, and LDL–C 70-189 mg/dL

Evaluate and Treat Laboratory Abnormalities
1. Triglycerides ≥500 mg/dL
2. LDL–C ≥190 mg/dL
 - Secondary causes (Table 6)
 - If primary, screen family for FH
3. Unexplained ALT >3X ULN

*Fasting lipid panel preferred. In a nonfasting individual, a nonfasting non-HDL–C >220 mg/dL may indicate genetic hypercholesterolemia that requires further evaluation or a secondary etiology. If nonfasting triglycerides are >500 mg/dL, a fasting lipid panel is required.
Primary Prevention

Initiating Statin Therapy (con’t)

§ 1) Potential ASCVD risk reduction benefits (e.g., absolute risk reduction from moderate- or high-intensity statin therapy can be approximated by using the estimated 10-year ASCVD risk and the relative risk reduction of ~30% for moderate-intensity statin or ~45% for high-intensity statin therapy. 2) Potential adverse effects. The excess risk of diabetes is the main consideration in ~0.1 excess case per 100 individuals treated with a moderate-intensity statin for 1 year and ~0.3 excess cases per 100 individuals treated with a high-intensity statin treated patients for 1 year. Note: a case of diabetes is not considered equivalent to a fatal or nonfatal MI or stroke. Both statin-treated and placebo-treated participants experienced the same rate of muscle symptoms. The actual rate of statin-related muscle symptoms in the clinical population is unclear. Muscle symptoms attributed to statin should be evaluated in Table 8, Safety Rec 8.

‡These factors may include primary LDL–C ≥160 mg/dL or other evidence of genetic hyperlipidemias, family history of premature ASCVD with onset <55 years of age in a first degree male relative or <65 years of age in a first degree female relative, sensitivity-C-reactive protein ≥2 mg/L ≥300 Agatston units or ≥75 percentile for age, sex, and ethnicity (For additional information, see http://www.mesa-nhlbi.org/CACReference.aspx), ABI <0.9, or lifetime risk of ASCVD. Additional factors that may aid in individual risk assessment may be identified in the future.
Individuals Not in a Statin Benefit Group

- In those not clearly in a statin benefit group, additional factors may inform treatment decision-making:
 - Family history of premature ASCVD
 - Elevated lifetime risk of ASCVD
 - LDL–C ≥160 mg/dL
 - hs-CRP ≥2.0 mg/L
 - Subclinical atherosclerosis
 - CAC score ≥300/75%ile or ABI<0.9

- Discussion of potential for ASCVD risk reduction benefit, potential for adverse effects, drug-drug interactions, and patient preferences
Monitoring & Safety

• Measure LDL-C on therapy to assess adherence, need for further lifestyle modification, potential need for additional therapy in high-risk patients

• Safety
 – RCTs & meta-analyses of RCTs used to identify important safety considerations
 – Allow estimation of net benefit from statin therapy
 • ASCVD risk reduction versus adverse effects
• Expert guidance on management of statin-associated adverse effects, including muscle symptoms
Three Principles

• Do not focus on LDL cholesterol levels as drug therapy goals

• Use proven medications to reduce ASCVD risk
 – Individualize after that

• Make decisions on drug treatment in primary prevention based on the patient
 – Risk discussion with patient is required
 – Assessment of absolute benefits and harms
JBS3 and ACC/AHA

- Systematic reviews on critical questions
- Very similar identification of evidence base in terms of process and outcomes
- Similar approaches to risk assessment
 - 10-year and lifetime risk estimation
 - QRISK2 vs Pooled Cohort Equations
 - Traditional RF inputs, slightly different endpoints
 - Do not recommend routine screening with novel markers, but perhaps in some subgroups
JBS3 and ACC/AHA

- Similar approaches to risk communication and treatment
 - Starts with risk tool and a risk/benefit discussion about intensity of prevention efforts
 - Similar RRR means select patients based on higher absolute risk
 - Broader base for pharmacotherapy
 - Increased sensitivity and lower specificity given marked efficacy and benign low-cost drug (statins)
 - Statins >>> other classes
JBS3 and ACC/AHA

- Consideration of statins for those with 10-year risk >10% (JBS) or 7.5% (ACC/AHA)
 - Nearly identical thresholds considering difference in endpoints of interest
 - ACC/AHA focuses on statin intensity
 - JBS focuses on 2 doses of atorvastatin based on C-E analysis
JBS3 and ACC/AHA

• “In conclusion, the new British and American guidelines have much in common. This should come as no surprise since they are both based on the same scientific foundation. The fact that totally different committees, in different societies, working separately and independently came to nearly identical conclusions and recommendations suggests to me that bias did not greatly play a role in either’s conclusions. It is, as we would hope, that the science drives the outcome of clinical practice guidelines.”

Greenland, Heart, In press